gpc-generator/paynl_aviza.py
2025-02-26 14:07:49 +01:00

210 lines
7.7 KiB
Python

import csv
import pandas as pd
import chardet
from datetime import datetime
from gpc import Data, Header, TransactionCode, CURRENCIES_GPC
from utils import extract_order_number, extract_numbers, parse_date
from decimal import Decimal, ROUND_HALF_UP
def load_bank_transactions(csv_file):
"""
Loads the bank transactions CSV file into a DataFrame and returns it.
:param csv_file: Path to the bank transactions CSV file.
:return: A pandas DataFrame containing the transactions.
"""
df = pd.read_csv(csv_file, delimiter=';', dtype=str)
# Ensure the required column exists
if 'Zpráva pro příjemce' not in df.columns:
raise ValueError("The CSV file does not contain the required column 'Zpráva pro příjemce'.")
return df
def search_bank_transaction(df, search_string):
"""
Searches for a given string in the 'Zpráva pro příjemce' column of the loaded DataFrame.
:param df: Pandas DataFrame containing bank transactions.
:param search_string: String to search for in the 'Zpráva pro příjemce' column.
:return: The first matching row as a dictionary or None if not found.
"""
matching_row = df[df['Zpráva pro příjemce'].str.contains(search_string, na=False, case=False)]
return matching_row.iloc[0].to_dict() if not matching_row.empty else None
def convert_csv_to_gpc(csv_file_path, gpc_file_path, account_number, currency, mapping):
gpc_lines = []
global transactions_df
if mapping['forced_encoding'] is not None:
detected_encoding = mapping['forced_encoding']
print(f"Forced encoding: {detected_encoding}")
else:
with open(csv_file_path, 'rb') as f:
rawdata = f.read(1024) # Read a small part of the file
result = chardet.detect(rawdata)
detected_encoding = result['encoding']
print(f"Detected encoding: {detected_encoding}")
with open(csv_file_path, mode='r', encoding=detected_encoding) as csv_file:
reader = csv.DictReader(csv_file, delimiter=mapping['delimiter']) if mapping['is_dict_mapping'] else csv.reader(csv_file, delimiter=mapping['delimiter'])
if not mapping['is_dict_mapping']:
next(reader)
total_payout = 0.0
first = True
clearing_id = ""
for row in reader:
if first:
clearing_id = row[mapping['CLEARING_ID']]
first = False
reference = extract_order_number(row[mapping['reference']])
transaction_id = extract_numbers(row[mapping['transaction_id']]) if mapping['use_transaction_id'] else reference
direction = row[mapping['direction']].lower() if mapping['direction'] is not None else None
source_name = row[mapping['source_name']].replace("Nazwa nadawcy: ", "")[:20].ljust(20) if mapping['use_source_name'] else ""
payer_account = extract_numbers(row[mapping['payer_account']].replace("Rachunek nadawcy: ", "").replace(" ", ""))[:16].ljust(16) if mapping['payer_number_exists'] else 0
if payer_account != 0:
if payer_account.strip() == "":
payer_account = 0
created_on = parse_date(row[mapping['created_on']])
# Convert the value using Decimal instead of float
source_str = row[mapping['source_amount']].replace(',', '.')
source_amount = Decimal(source_str)
# Quantize to 2 decimal places (rounding if necessary)
source_amount = source_amount.quantize(Decimal('0.01'), rounding=ROUND_HALF_UP)
# Multiply by 100 to get cents (if that's what you need) and convert to integer
source_amount_cents = int(source_amount * 100)
# Determine transaction type
if(direction is None):
if source_amount_cents > 0:
transaction_code = TransactionCode.CREDIT
else:
transaction_code = TransactionCode.DEBET
else:
if direction == "out":
transaction_code = TransactionCode.DEBET
else:
transaction_code = TransactionCode.CREDIT
# Convert currency
currency_code = "100" + str(transaction_code.value)
# Create GPC Data object
gpc_data = Data(
account=account_number,
payer_account=payer_account,
no=transaction_id,
balance=source_amount_cents,
code=transaction_code,
variable=int(reference) if reference.isdigit() else 0,
constant_symbol=0,
bank_code=0,
specific_symbol=0,
client_name=source_name,
currency=currency_code,
date=created_on
)
gpc_lines.append(gpc_data.to_string())
total_payout += source_amount_cents
# break
# add fees
# fees_data = Data(
# account=account_number,
# payer_account=0,
# no=0,
# balance=total_fees,
# code=transaction_code,
# variable=0,
# constant_symbol=0,
# bank_code=0,
# specific_symbol=0,
# client_name="",
# currency=CURRENCIES_GPC.get("CZK", "0000"),
# date=created_on
# )
#
# gpc_lines.append(gpc_data.to_string())
corresponding_transaction = search_bank_transaction(transactions_df, clearing_id)
# vyuctovani row
payout_data = Data(
account=account_number,
payer_account=2801379531,
no=0,
balance=total_payout,
code=TransactionCode.DEBET,
variable=666111222,
# variable=corresponding_transaction['Zpráva pro příjemce'].split(',')[-1].strip(),
constant_symbol=0,
bank_code=0,
specific_symbol=0,
client_name="CG vyuctovani",
currency="1001",
date=parse_date(corresponding_transaction['Datum'])
)
gpc_lines.append(payout_data.to_string())
# Create and add the header
header = Header(
account=account_number,
account_name=currency.ljust(20),
old_date=datetime.strptime("01-03-20", "%d-%m-%y"),
old_balance=0,
old_sign='+',
new_balance=0,
new_sign='+',
turnover_debet=total_payout,
turnover_debet_sign='+',
turnover_credit=total_payout,
turnover_credit_sign='+',
transaction_list_no=3,
date=datetime.now()
)
gpc_lines.insert(0, header.to_string())
with open(gpc_file_path, mode='w', encoding='utf-8') as gpc_file:
gpc_file.writelines(gpc_lines)
print(f"GPC file successfully created: {gpc_file_path}")
# Example mappings
mapping_paynl = {
'transaction_id': 'PAYMENT_SESSION_ID',
'reference': 'EXTRA_1',
'direction': None,
'source_name': 'CONSUMER_NAME',
'source_amount': 'TURNOVER_TOTAL',
'source_currency': '',
'payer_account': 'PAYMENT_SESSION_ID',
'created_on': 'TRANSACTION_DATE',
'CLEARING_ID': 'CLEARING_ID',
'fees': 'COSTS',
'delimiter': ";",
'is_dict_mapping': True,
'use_transaction_id': True,
'payer_number_exists': False,
'use_source_name': False,
'forced_encoding': None
}
transactions_df = load_bank_transactions("bank_statement.csv")
# Example usage:
convert_csv_to_gpc("Specification clearing 2024-05-10.csv", "avizo_paynl_test.gpc", account_number=3498710000999117, currency="EUR", mapping=mapping_paynl)
# convert_csv_to_gpc("pko_input.csv", "pko_output.gpc", account_number=95102013900000630206821286, currency="PLN", mapping=mapping_pko)
# convert_csv_to_gpc("sparkasse_input.csv", "sparkasse_output.gpc", account_number=95850503000221267034, currency="EUR", mapping=mapping_sparkasse)